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Reduction of Edge Reflections in the TLM Model

Ian G. Gosling

Abstract—In the transmission-line matrix (TLLM) method, spu-
rious reflection is encountered at the edge of the mesh. By
modeling the infinite region exterior to the mesh by transfor-
mation to a finite region and discretization by a second mesh, the
magnitude of reflection is much reduced. Numerical results are
presented together with an application.

1. INTRODUCTION

HE transmission line matrix (TLM) method is one of the

available tools which enable the electromagnetic fields
around circuit components and structures to be studied. A full
review of the method and comparison with other methods
has been given by Hoefer [1], [2]. Other developments are
the introduction of the hybrid symmetrical node [3] for a
uniform 2-dimensional mesh, which affords some reduction
in computer memory requirements, and extensions to mixing
of mesh types [4], [5].

Fig. 1 shows how the whole of infinite free space is modeled
in reported applications of the TLM method. The finite spatial
region I containing the physical structure under study is dis-
cretized by a deformed rectangular mesh of link transmission
lines and scattering nodes. Because the amplitudes of the wave
pulses traveling on the link lines are all kept in computer
storage, the mesh can only have a finite number of nodes.
The infinite space II exterior to the region under study is not
modeled by a mesh at all. Instead, its presence is accounted
for by suitably terminating the link transmission lines at the
edge of the mesh, which requires a simplifying assumption.

This limitation led early workers to treat only interior
boundary value problems such as enclosed waveguides or
shielded microstrip [6]. In other problems such as computation
of the radiation pattern of antennas, the scattered waves must
be allowed to travel outward into free space. The usual
simplifying assumption is that terminating the link lines at the
edge of the mesh in their own characteristic impedance creates
a TEM termination which absorbs incident waves completely.
However, this assumption is not exactly true.

When a plane wave is incident on the boundary of the mesh
parallel to a mesh axis, Fig. 2(a), the wave can be represented
by pulses on only those link lines parallel to the direction
of propagation. When these link lines are terminated by an
impedance Zj equal to their own characteristic impedance
Z,, the pulses are completely absorbed in the terminations as
required. However, when the wave is incident at some other
angle ¢, Fig. 2(b), the wave must be represented by pulses on
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Fig. 1.

TLM model of infinite free space.

all the link lines. The effective load impedance seen by the
wave is no longer equal to Zy, but is [7]

Zysecd o))

where ¢ is the angle of incidence, thereby giving rise to a
large unwanted reflection. This reflected wave can be made to
vanish for a given value of ¢ by choosing Z; to make the
terminating impedance given by expression (1) equal to Z,
[7]. However, when more than one plane wave, or a nonplane
wave, is present, no such termination can cause the reflected
wave amplitude to vanish.

In another method which keeps the restriction to interior
boundary value problems, the mesh is extended to include
in the terminating waveguide-a physical structure known to
act as a matched termination. Alternatively, the terminating
waveguide can be modeled using a very large number of nodes
so that the initial excitation has not reached the end by the
time the computer program is halted [8]. The result achieved
is a reflection coefficient of less than 0.03 over a waveguide
bandwidth.

A new technique [9], described below, is to model the whole
of the infinite region II of Fig. 1 by a transmission-line mesh
which is then connected on to the mesh describing region 1.
In this way, the whole of space is modeled and restriction of
the type of problem and the simplifying assumption regarding
the edge of the mesh are not needed. It will be seen that
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Fig. 2. Reflection from edge of matrix.

a very low reflection coefficient can be achieved, comparing
favorably with the results achieved in earlier work. Finally,
computed results for an application requiring such a low
reflection coefficient will be given.

II. MODELING INFINITE FREE SPACE

To develop the infinite free space model, the artificial
boundary between regions I and II of Fig. 1 must first be
chosen. Region 1 is modeled directly by a transmission-
line mesh, whereas the infinite exterior region II will be
transformed, and the transformed region then modeled by
another mesh. The boundary should be chosen so that all
the physical structure under study and all field source and
observation points lie within region 1. This is because of the
simple way in which the connection between the two matrices
is performed: the direction of wave propagation is affected as
waves cross the boundary. The mesh spacing in region II also
becomes very large near the point at infinity. The model of
region II can thus, at present, only be used as an absorber of
waves, and not for purposes of prediction of fields in region
II. The model of region I retains the full properties of the
TLM model.

The model can be used with a variety of types of curvilinear
coordinates to describe the two regions. Here, without loss
of generality we take the case where region I is modeled
by a deformed rectangular mesh. Then the boundary may be
naturgily be chosen to be cuboid in shape, as this follows
the edge of a Cartesian mesh and minimizes the wastage of
computer memory. However, other shapes may be chosen, see
below.

The infinite region II is now transformed conforma.ly to the
finite segion I/ of Fig. 3. The transformation is chosen so that
the boundary between regions I and Il maps to itself, and the
point at infinity maps to the origin (which should lie within
region I). To accomplish this, we must first formulate the
TLM method in arbitrary orthogonal curvilinear coordinates
[10]. We take (x,y, ) to be Cartesian coordinates in 1egion 11
and (£, v, () to be curvilinear coordinates in region II /. The
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z-components of the two Maxwell equations

curl H = eOE/8t + oE (2a)
curl E = —puoH [ 0¢, (2b)
are
8/81)(th<) - G/GC(hUHU)
= hvhceaEg/at -+ h,_,h(O’EE (3a)

8/0u(he Be) — 8]C(hyBy) = —hyheudHe /9t (3b)

where he , ¢ are the metrics in the three transformed local
coordinate axes. In the TLM model, we discretize these
equations at the coordinates of a mesh node by introducing
nodal voltages V¢ ., ¢ and nodal loop currents I ,, ¢. Following
the procedure of Section II of [11], when the voltages and
currents are given by

E: =V;/hea,
H, = I:/h,b,
He=—1,/hec,
€ = Ceheafh,bhec,
o = Gehga/h,bhec @
in (3a), and
He = —I¢ [hea,
L, =V,/h,b,
Be=Ve/hee,
p = Lehea/h,bhec 6)

in (3b), then (3) reduces to Kirchoff’s current and voltage laws
at each node. Similarly for the other field components. Here
C v.¢ are the total shunt capacitances at the shunt connections
in the node, G¢ ., ¢ are conductances placed to give loss, and
Lg¢ ¢ are the total inductances in the series connections. a, b, ¢
are the local cell dimensions of the mesh in region IT'.

The characteristic impedances of the link transmission lines
and stubs at each node of the mesh are now chosen so that
the total capacitance and inductance they present at the node
are equal to C¢ ,, ¢ and L¢ ,, ¢, respectively. The symmetrical
condensed node formulation [11] has twelve link transmission
lines connected to each node, having characteristic impedance
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Fig. 4. Matrices used when the boundary is a cube.

equal to Z,, and the balance of capacitance and induc-
tance is represented by six stubs of characteristic impedances
Zo/st,sv,sC and Zonf,sv,s( where

Y;‘S = 4(erh§ahvb/h<ch — 1)

Yw = 4(erhvbh¢c/hgah — 1)

Ysg = 4(6Th<ch§a/hvbh - 1)

Zsg = 4(prhgahyb/hech — 1)

Zgw = 4(prhobhec/heah — 1)

Zse = 4(purhechea/hy,bh — 1), (6)
where 7 is a constant chosen to make the right-hand side
nonnegative at all nodes.

Alternatively, in the hybrid condensed node formulation
{3], the link transmission lines have characteristic impedances
chosen to account for all the inductance, given by Z,/Y{ ,, .
where

}/é = hgah/urhvbhcc

Y. = hybh/pnhechea

YCI = hgch/urhgahvb. (7)
Only three stubs are required, and they account for the
balance of capacitance. Their characteristic impedances are
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Fig. 5. Waveguide and horn used in numerical experiment.

Z0/Yje o, 5c Where

e = 4é,hybhec/heah — 2(Y] + YY)
Y., = deyhechea/hubh — 2(Y + Y{)
Y) = decheahob/hech — 2(Y{ +Y)). ®)

h is chosen as before and can be chosen larger than the
maximum value for the symmetrical condensed node, thus,
reducing the computation time required.

To complete the development of the TLM method, the line
and stub impedances are inserted in the scattering matrix at
each node, given by [12] for the symmetrical condensed node
and by [3] for the hybrid condensed node. The scattering
matrix of the node representing the point at infinity is set to
the zero matrix.

For the hybrid condensed node formulation, it will be seen
from (7) that even with a uniform node spacing, the inductance
varies from one node to another because the metrics are
functions of position, and thus the characteristic impedance
of the link lines connected to adjacent nodes may be different.
Scattering at the junction of link lines halfway between the
nodes must therefore be included, which offsets the reduction
in the amount of computation expected with this type of node.
The scattering matrix at the junction of cells n and n + 1 is,
in terms of voltages,

1 Yn - Yn+1
Yn + Yn-l—l ZY"

The time step in real time is

At = h/2¢,

21/"n+1
Yn+1 - Yn ’ (9)

(10)

where ¢, is the speed of light in vacuum.
We must also remember to implement connection between

- regions I and-II of Fig. 1. This is the same as connecting region

I to the transformed region II’ of Fig. 3. To accomplish this, we
note that regions I and II’ share an identical outer boundary.
The transformation should be chosen such that the ends of
the link transmission lines at the edge of the mesh modeling
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region I automatically coincide in position with those at the
edge of region II'. The algorithm to implement connection is
then a simple copy instruction from one mesh to the other.

III. CuBIC BOUNDARY

We now apply the method to particular cases. We first take
the boundary separating the interior finite region I and the
exterior infinite region II to be a cube. (The general case of a
cuboid can be transformed to a cube by linear scaling along
one or two axes.) The appropriate transformation from region
I to region IU' is

eriv=2"(3G+i), 0<ay<i
¢ )

where Z is the lemniscatic Weierstrass zeta-function, which
1s defined in one quadrant, and similarly by symmetry for the
other quadrants —1 < z,y < 0. This transforms only two
of the three dimensions, and can thus only be applied to a
restricted class of problems. The metrics are given by

he = h, = [P(€ + )|

he =1 (12)

where P is the Weierstrass P-function. Weierstrass functions
may be evaluated using the first few terms of the power series
of [13]. The effect of the transformation is shown in Fig. 4.
It will be seen that the cell just outside the boundary differs
in size considerably from that just inside, that the cell sizes in
region I' are not uniform, and that space is distorted around
the corner of the cube. These are disadvantages which may
limit the usefulness of this transformation.

To test the method, a nondispersive rectangular waveguide
was formed by placing electric walls normal to the E-plane,
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Fig. 7. Matrices for a spherical boundary.

and magnetic walls normal to the H-plane, as shown in Fig.
5. The waveguide was continued outside the cubic boundary
following the directions of the link lines of the mesh to
form an infinitely long horn antenna. The waveguide could be
swiveled around to investigate reflection for different values
of ¢. Both ends were terminated by a flat reflecting sheet
of zero reflection coefficient. Excitation was by a Gaussian
pulse plane wavefront at the end nearest the origin, Fig. 6,
[7]- It is limited in its time extent, allowing the incident pulse
to be differentiated from any reflected pulses. It also has a
bandlimited power spectrum. This allows reduction in pulse
dispersion due to velocity error on the mesh.

When the node spacing in the finite interior region [ was
1 length unit, and the half-side of the cube was 120.5 units,
the corresponding node spacings in the transformed region I’
varied considerably along the side of the cube, between 0.46
and 22.6 units. Because of this wide variation, the symmetrical
condensed node was chosen because it was found in some
cases to have a lower sensitivity to differences in node spacing
between adjacent nodes, as demonstrated in the results of
Section VI below. Then A must be small, in this case 0.02
units, implying a small time step and a long computation
time. Some adjustment of the node spacing in region I to vary
between 0.1 and 1 unit gave a slightly better value of A of
0.03 units. The spectral bandwidth of the exciting pulse was
kept below 0.05 times the cutoff frequency on the mesh.
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TABLE 1

RESULTS FOR THE SPHERICAL BOUNDARY
node type waveguide | A refl. coeff, with | refl. coeff. with

orientation TEM boundary | exterior region
symm. cond. | 0° 0.67 |0 2x10-6 [9]

45° 0.28 10.172 0.005 [9]
hybrid cond. | 0° 0.99 |0 0.0013

45° 0.50 |0.172 0.024

The E, field component was observed at a point midway
between the origin and the boundary of the cube. When the
waveguide was directed from the origin along an axis of the
mesh, the reflection coefficient was 0.008 or —41 dB, Fig. 6, a
good result which compares well with the results of previous
work referred to above. A return signal can be seen at a
very high number of iterations, higher than would normally
be used in solving an application problem. Another run was
performed with the waveguide oriented at an angle of 45°
to the z-axis, and lying in the z-y plane The result should
be expected to be worst here because of high dispersion in
the mesh for propagation in this direction, and because of
the sharp change in node spacing at the corner of the cube,
through which the waveguide was chosen to pass. i had to be
reduced to 8 x 1074, and a reflection coefficient of 0.78 was
computed, with the reflected pulse arriving back at the origin
after 29 000 iterations. This poor result with an extraordinarily
long run time is because of the large distortion of space near
the corners of the cube.

IV. SPHERICAL BOUNDARY

A spherical boundary between regions I and II is another
possibility, Fig. 7. With the spherical shape, if a whole cubic
mesh is stored in computer memory, then only about half
the volume is inside the inscribed sphere, so that half the
memory is unused. This inefficiency may be remedied by
storing only the data for those nodes lying inside the sphere.
The appropriate transformation from region II to region II' is
the vector reciprocal

r? =12 +y? + 2% (13)
The metrics are given by
he = hy = he = 12 (14)

Now, not only does the boundary transform to itself, but each
point on the boundary also transforms to itself, removing the
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difficulty of variation of node spacing encountered with the
cubic boundary. Because the transformation is conformal, the
angle of incidence to the sphere of the link transmission lines
just inside the surface of the sphere is the same as the angle of
incidence of those just outside. It will be seen from Fig. 7(a)
that this causes the direction of propagation along the link lines
in real space to change sharply across the spherical boundary,
especially around 45° latitude. However, if we ensure that the
entire object or device to be modeled is contained within the
sphere, then the exterior region is only used as an absorber;
one is not interested in the exact values of the fields here.
It will also be seen from the figure that the dimensions of
those cells just inside the surface of the sphere are different
from their neighbors. This must be accounted for by modifying
the characteristic impedances of the stubs for these nodes by
substituting the local cell dimensions into (6).

The same nondispersive waveguide was modeled using the
spherical boundary. The node spacing was 1 length unit and
the radius of the sphere was 120.5 units. The hybrid condensed
node was used. Waveguide orientations were chosen again
firstly along one mesh and, secondly, at an angle of 45° to
one axis, where pulse dispersion and the change of direction
of link lines should give a worse result. The field observation
point was midway between the origin and the surface of the
sphere.

The value of ~ and the computed reflection coefficient
are shown in Table I together with those for the spherical
condensed node from [9]. In some cases, the reflected waves
were buried in the numerical noise, so the figures in the table
are accurate to between one and two significant figures. As
in the case of the cubic boundary, a high frequency return
signal became apparent at a large number of ‘iterations, again
a larger number than would be used in a normal application.
The value of A for the hybrid condensed node is about half that
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Fig. 9. TLM model of diffraction through a narrow slit.

for the symmetrical condensed node, so that the execution time
of the program is about half for the hybrid condensed node
formulation. For comparison, the reflection coefficient for a
TEM boundary with no exterior tegion is included, computed
from the load impedance in (1).

‘When the waveguide was pointed along an axis of the mesh,
an extremely low reflection coefficient was achieved in the
case of the symmetrical condensed node, an excellent result.
When the waveguide was pointed at 45° to one of the axes
of the mesh, and for the hybrid condensed node, the reflection
coefficient was higher, but still very small, around 0.0013 to
0.024 or —58 dB to —32 dB. This compares well with the
results of other methods noted above [8], [9], where reflection
coefficients of as low as 0.03 were reported, and is much less
than the value for the TEM boundary alone. Surprisingly, the
low result is achieved despite the abrupt change of direction
of the link lines at the surface of the sphere. This may be
because the wavefront still propagates properly along the horn,
although the contributing wavelets along the link lines become
interchanged as they cross the spherical surface.

V. LIMITING THE SI1ZE OF THE EXTERIOR REGION

If only a part of the region II of Fig. 1 needs to be modeled,
then computer storage and time requirements are reduced. To
study this aspect, the horn described in Section IV above
was truncated by bringing the plane of match-terminated link
transmission lines, Fig. 5, closer to the spherical boundary.
Computer storage is not required to model the space beyond
the plane. When the program was run, the incident pulse
was followed in time by the small pulse reflected from the
boundary, then by a large undispersed pulse reflected from the
terminating plane. This suggests that the reflection coefficient
reported above is due chiefly to the abrupt change in direction
of link transmission lines at the boundary.

0.089 -
— — — — analytic
TLM
IE, |
i
0.004 /N

0 frequency (GHz) 250

Fig. 10. Spectrum of field diffracted through a slit, matrix edge matched.

As the position of the plane was moved from the spherical
boundary outwards towards infinity, the large reflected pulse
returned after a larger number of iterations, as would be
expected, but grew in amplitude. When the position of the
plane approached the node representing the point at infinity,
the large reflected pulse ceased to grow in amplitude and
became substantially dispersed. Fig. 8 shows the reflected
pulse in this limiting case.

From these results, it is recommended that for a small
number of iterations of the method, the computer storage for
the mesh modeling space outside a certain radius from the
origin may be released. That radius is determined by the
number of iterations taken for the large reflected pulse to
reach the field observation point. Alternatively, if the whole of
infinite space is to be modeled, the number of iterations must
be limited so that the dispersed pulse has not yet returned.

VI. APPLICATION: DIFFRACTION

An example application is the simulation of the far field for
diffraction through a long narrow slit of width g excited by
a uniform electric field across the slit. The analytical solution
to this is well known and is

E = ksinc (fa sin 9) 15

where k is a constant, /3 is the free-space propagation constant,
6 is the scattering angle, and F is the observed electric field
amplitude. This is a difficult problem for the TLM method
as the node spacing must be small so that the zeros of the
sinc function fall below the cutoff frequency of the mesh [2].
This means that the mesh must contain a large number of
nodes, increasing computer storage and run time requirements
substantially. In addition, with a far field observation point,
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any reflection from the edge of the TLM mesh may interfere
with the diffracted field, causing errors in the result.

The TLM model is shown in Fig. 9. Advantage is taken of
symmetry to reduce the size of the problem in the long axis
of the slit by introducing a pair of magnetic image planes,
and in its short axis by introducing an electric image plane.
The slit width was ¢ = 6.0 mm, the node spacing 0.3 mm,
and the field observation point distant 60.45 mm from the slit
at # = 7 /4. This required a large mesh of 201 x 3 x 201
nodes in (z,y, ) directions, respectively. The simulation was
limited to 2047 iterations to give good frequency accuracy but
truncated before the expected dispersed reflected pulse had
any effect. From (15), the zeros of the diffracted field are
expected to fall at multiples of 70.7 GHz. With the edge of the
mesh match-terminated, the spectrum of the simulated field is
compared with the analytic result in Fig. 10. The symmetrical
condensed node and hybrid condensed node formulations gave
identical results. The zeros do fall where expected, but the
response has a short-period ripple superposed, typical of an
interfering reflected signal such as the reflection from the edge
of the mesh. The discrepancy in the low frequency response
is attributed to time series truncation error.

When the method described in this paper is applied, with a
surrounding spherical boundary, Fig. 11, the ripple is absent in
the result for the symmetrical condensed node, corresponding
to the reduced reflection from the edge of the mesh. The
result for the hybrid condensed node did not show a strongly
enhanced behavior. This is attributed to spurious scattering at
the spherical boundary where the local cell dimensions vary
from the 0.3 mm cube.

VII. CONCLUSION AND RECOMMENDATIONS

This paper has described a method of modeling the infinite
space outside the region under study in the TLM method.
This can be done by dividing space with a boundary surface
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and using a transformation and two transmission-line matrices
instead of one. A cubic boundary, used with the Weierstrass
transformation, gives quite poor results. However, when a
spherical boundary and the reciprocal transformation are used,
the amplitude of reflections at the edge of the mesh is reduced
to between 2 x 1075 and 0.024, depending on the position of
the reflecting point relative to the axes of the mesh, and on
which node formulation is used. These results compare well
with those of other methods, where a reflection coefficient as
low as 0.03 has been reported. A cubic mesh in Cartesian
coordinates has been used in this work. It would be expected
that a lower reflection coefficient could be achieved if a
mesh based on spherical polar coordinates were used with
a spherical boundary, as this eliminates the abrupt change
in direction of the link transmission lines at the boundary.
This would be suitable when the physical structure of the
device under study lends itself to description in spherical
coordinates.

When the mesh describing the infinite region outside the
boundary is limited in size by not modeling space beyond a
certain distance from the origin, or when a large number of
iterations is used, a large reflected signal is observed. This
number of iterations is normally larger than that required for
a certain level of truncation error in a given application. It is
recommended that the number of iterations required to limit
truncation error be used as a guide to how much of the mesh
may safely be omitted.
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