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Reduction of Edge Reflections in the TLM Model
Ian G. Gosling

Abstract-In the transmission-line matrix (37LM) method, spu-
rious reflection is encountered at the edge of the mesh. By

modeling the infinite region exterior to the mesh by transfor-

mation to a finite region and discretization by a second mesh, the
magnitude of reflection is much reduced. Numerical results are

presented together with an application.

I. INTRODUCTION

T HE transmission line matrix (TLM) method is one of the

available tools which enable the electromagnetic fields

around circuit components and structures to be studied, A full

review of the method and comparison with other methods

has been given by Hoefer [1], [2]. Other developments are

the introduction of the hybrid symmetrical node [3] for a

uniform 2-dimensional mesh, which affords some reduction

in computer memory requirements, and extensions to mixing

of mesh types [4], [5].

Fig. 1 shows how the whole of infinite free space is modeled

in reported applications of the TLM method. The finite spatial

region I containing the physical structure under study is dis-

cretized by a deformed rectangular mesh of link transmission

lines and scattering nodes. Because the amplitudes of the wave

pulses traveling on the link lines are all kept in computer

storage, the mesh can only have a finite number of nodes.

The infinite space II exterior to the region under study is not

modeled by a mesh at all. Instead, its presence is accounted

for by suitably terminating the link transmission lines at the

edge of the mesh, which requires a simplifying assumption.

This limitation led early workers to treat only interior

boundary value problems such as enclosed waveguides or

shielded microstrip [6], In other problems such as computation

of the radiation pattern of antennas, the scattered waves must

be allowed to travel outward into free space. The usual

Simplifying assumption is that terminating the link lines at the

edge of the mesh in their own characteristic impedance creates

a TEM termination which absorbs incident waves completely.

However, this assumption is not exactly true.

When a plane wave is incident on the boundary of the mesh

parallel to a mesh axis, Fig. 2(a), the wave can be represented

by pulses on only those link lines parallel to the direction

of propagation. When these link lines are terminated by an

impedance ZL equal to their own characteristic impedance

ZO, the pulses are completely absorbed in the terminations as

required. However, when the wave is incident at some other
angle @, Fig. 2(b), the wave must be represented by pulses on
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Fig. 1. TLM model of infinite free space.

all the link lines. The effective load impedance seen by the

wave is no longer equal to ZL but is [7]

Z~ see 4 (1)

where r#I is the angle of incidence, thereby giving rise to a

large unwanted reflection. This reflected wave can be made to

vanish for a given value of $ by choosing ZL to make the

terminating impedance given by expression (1) equal to Z.

[7]. However, when more than one plane wave, or a nonplane

wave, is present, no such termination can cause the reflected

wave” amplitude to vanish.

In another method which keeps the restriction to interior

boundary value problems, the mesh is extended to include

in the terminating waveguide a physical structure known to

act as a matched termination. Alternatively, the terminating

waveguide can be modeled using a very large number of nodes

so that the initial excitation has not reached the end by the

time the computer program is halted [8]. The result achieved

is a reflection coefficient of less than 0.03 over a waveguide

bandwidth.

Anew technique [9], described below, is to model the whole

of the infinite region II of Fig. 1 by a transmission-line mesh
which is then connected on to the mesh describing region I.

In this way, the whole of space is modeled and restriction of

the type of problem and the simplifying assumption regarding

the edge of the mesh are not needed. It will be seen that
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(a) (b)

Fig. 2. Reflection from edge of matrix.

a very low reflection coefficient can be achieved, comparing

favorably with the results achieved in earlier work. Finally,

computed results for an application requiring such a low

reflection coefficient will be given.

II. MODELING INFINITE FREE SPACE

To develop the infinite free space model, the artificial

boundary between regions I and II of Fig. 1 must first be

chosen. Region I is modeled directly by a transmission-

line mesh, whereas the infinite exterior region II will be

transformed, and the transformed region then modeled by

another mesh. The boundary should be chosen so that all

the physical structure under study and all field source and

observation points lie within region I. This is because of the

simple way in which the connection between the two matrices

is performed: the direction of wave propagation is affected as

waves cross the boundary. The mesh spacing in region II also

becomes very large near the point at infinity. The model of

region II can thus, at present, only be used as an absorber of

waves, and not for purposes of prediction of fields in region

II. The model of region I retains the full properties of the

TLM model.

The model can be used with a variety of types of curvilinear

coordinates to describe the two regions. Here, without loss

of generality we take ‘he case where region I is modeled

by a deformed rectangular mesh. Then the boundary may be
naturs!ly be chosen to be cuboid in shape, as this follows

the edge of a Cartesian mesh and minimizes the wastage of

computer memory. However, other shapes may be chosen, see

below.

The infinite region II is now transformed conformably to the

finite ?egion II ‘ of Fig. 3. The transformation is chosen so that

the boundary between regions I and II maps to itself, and the

point at infinity maps to the origin (which should lie within

region I). To accomplish this, we must first formulate the

TLM method in arbitrary orthogonal curvilinear coordinates

[10]. We take ($, y, z) to be Cartesian coordinates in legion II

and (~, v,<) to be curvilinear coordinates in region II ‘. The

exterior
region

II ‘

Fig. 3. Transformation of Fig. 1 to two identical finite regions.

x-components of the two Maxwell equations

curl II = a91Z/t% + all (2a)

curl E = –p8H/&, (2b)

are

i3/d7)(h(H() – a/a((h.Hv)

= hVhCcaEC/& + huhC~E( (3a)

d/&~(hCEC) – ~/~<(ht,Eu) = –hvhcp~H&/& (3b)

where hf,.,( are the metrics in the three transformed local

coordinate axes. In the TLM model, we discretize these

equations at the coordinates of a mesh node by introducing

nodal voltages V<,V,c and nodal loop currents I&,.,(. Following

the procedure of Section II of [11], when the voltages and

currents are given by

E< = V(/h(a,

H. ~ l(/hub,

H< E –l., /hCc3

e E ~chtalh~, bh(c,

o z GCh(a/hubhCc

in (3a), and

H( = –Icch(a,

E. E Vulhvb,

EC ~ VC/h(c,

[L ~ Lch(a/hvbhCc (5)

in (3b), then (3) reduces to Kirchoffs current and voltage laws

at each node. Similarly for the other field components. Here

C.t,v,c are the total shunt capacitances at the shunt connections

in the node, G(,V,C are conductance placed to give loss, and
Lc,u,( are the total inductances in the series connections. a, b, c

are the local cell dimensions of the mesh in region II’.

The characteristic impedances of the link transmission lines

and stubs at each node of the mesh are now chosen so that

the total capacitance and inductance they present at the node

are equal to Cc,,,, < and L<,U, C, respectively. The symmetrical

condensed node formulation [11] has twelve link transmission

lines connected to each node, having characteristic impedance

(4)
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Fig. 4. Matrices used when the boundary is a cube.

., and the balance of capacitance and induc-equal to Z

tance is represented by six stubs of characteristic impedances

ZO/YSC,8~,~C and .zozsc,su,sc where

Yst = 4(cThtahub/hCch – 1)

Y,. = 4(crhobhcc/htah – 1)

Y,c = 4(cThcch6a/hobh – 1)

Zs( = 4(pvhtahub/hCch – 1)

Z,u = 4(pvhubhCc/heah – 1)

Z~C= 4(~rhtchea/hvbh – 1). (6)

where h is a constant chosen to make the right-hand side

nonnegative at all nodes.

Alternatively, in the hybrid condensed node formulation

[3], the link transmission lines have characteristic impedances

chosen to account for all the inductance, given by Z. /y.,V,C

where

Y; = h<ah[prhubh<c

Y: = hubhl,u,h[chta

Y; = h<chlprh(ahub. (7)

Only three stubs are required, and they account for the

balance of capacitance. Their characteristic impedances are

matched termination .

excitation
oE~H

/

/\

\

+a)

Fig. 5. Waveguide and horn used in numerical experiment.

-w%(,sv,s(where

Y~C = 4erhubhcc/hCah – 2(YJ + Yj’)

Y~u = 4evh<ch<a/hubh – 2(Y[ + Y;)

Y~c = 4erhtahvb/hcch – 2(Y/ + Y:). (8)

h is chosen as before and can be chosen larger than the

maximum value for the symmetrical condensed node, thus,

reducing the computation time required.

To complete the development of the TLM method, the line

and stub impedances are inserted in the scattering matrix at

each node, given by [12] for the symmetrical condensed node

and by [3] for the hybrid condensed node. The scattering

matrix of the node representing the point at infinity is set to

the zero matrix.

For the hybrid condensed node formulation, it will be seen

from (7) that even with a uniform node spacing, the inductance

varies from one node to another because the metrics are

functions of position, and thus the characteristic impedance

of the link lines connected to adjacent nodes may be different.

Scattering at the junction of link lines halfway between the

nodes must therefore be included, which offsets the reduction

in the amount of computation expected with this type of node.

The scattering matrix at the junction of cells n and n + 1 is,

in terms of voltages,

1

[

Yn – Y.+1 2Yn+l

Yn + Yn+l 2Y. 1Y.+1 – Y. “
(9)

The time step in real time is

At = h/2c. (lo)

where COis the speed of light in vacuum.
We must also remember to implement connection between

regions I and II of Fig. 1. This is the same as connecting region

I to the transformed region II’ of Fig. 3. To accomplish this, we

note that regions I and II’ share an identical outer boundary.

The transformation should be chosen such that the ends of

the link transmission lines at the edge of the mesh modeling
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Fig. 6. Incident and reflected wave pulses.

region I automatically coincide in position with those at the

edge of region II’. The algorithm to implement connection is

then a simple copy instruction from one mesh to the other.

III. CUBIC BOUNDARY

We now apply the method to particular cases. We first take

the boundary separating the interior finite region I and the

exterior infinite region II to be a cube. (The general case of a

cuboid can be transformed to a cube by linear scaling along

one or two axes.) The appropriate transformation from region

II to region II’ is

‘+’V=Z-’(:’X+’Y))
<=.

where Z is the Iemniscatic Weierstrass

is defined in one quadrant, and similarly

other quadrants – 1 < x, y < 0. This

(11)

zeta-function, which

by symmetry for the

transforms only two

of the three dimensions, and can thus only be applied to a

restricted class of problems. The metrics are given by

he = h. = F’(& +@)l

h<=l (12)

where P is the Weierstrass ‘P-function. Weierstrass functions

may be evaluated using the first few terms of the power series

of [13]. The effect of the transformation is shown in Fig. 4.

It will be seen that the cell just outside the boundary differs

in size considerably from that just inside, that the cell sizes in

region II’ are not uniform, and that space is distorted around

the corner of the cube. These are disadvantages which may

limit the usefulness of this transformation.

To test the method, a nondispersive rectangular waveguide

was formed by placing electric walls normal to the E-plane,

\

Fig. 7. Matrices for a spherical boundary.

and magnetic walls normal to the H-plane, as shown in Fig.

5. The waveguide was continued outside the cubic boundary

following the directions of the link lines of the mesh to

form an infinitely long horn antenna. The waveguide could be

sw’iveled around to investigate reflection for different values

of q5. Both ends were terminated by a flat reflecting sheet

of zero reflection coefficient. Excitation was by a Gaussian

pulse plane wavefront at the end nearest the origin, Fig. 6,

[7]. It is limited in its time extent, allowing the incident pulse

to be differentiated from any reflected pulses. It also has a

bandlimited power spectrum. This allows reduction in pulse

dispersion due to velocity error on the mesh.

When the node spacing in the finite interior region I was

1 length unit, and the half-side of the cube was 120.5 units,

the corresponding node spacings in the transformed region II’

varied considerably along the side of the cube, between 0.46

and 22.6 units. Because of this wide variation, the symmetrical

condensed node was chosen because it was found in some

cases to have a lower sensitivity to differences in node spacing

between adjacent nodes, as demonstrated in the results of

Section VI below. Then h must be small, in this case 0.02

units, implying a small time step and a long computation

time. Some adjustment of the node spacing in region I to vary

between 0.1, and 1 unit gave a slightly better value of h of

0.03 units. The spectral bandwidth of the exciting pulse was

kept below 0.05 times the cutoff frequency on the mesh.
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node type

SylUllL eond

hybrid eond

TABLE I
RESULTSFORTHE SPHERICAL BOUNDARY

waveguide

orientation

0°

45°

0°

45°

h

0.67

0.28

0.99

0.50

refl. Coeff. with

TEM boundary

o

0.172

0

0.172

reft. Coeff.with

exterior region

2x1o-6 [91

0.005 [9]

0.0013

0.024

The Ev field component was observed at a point midway

between the origin and the boundary of the cube. When th~

waveguide was directed from the origin along an axis of the

mesh, the reflection coefficient was 0.008 or –41 dB, Fig. 6, a

good result which compares well with the results of previous

work referred to above. A return signal can be seen at a

very high number of iterations, higher than would normally

be used in solving an application problem. Another run was

performed with the waveguide oriented at an angle of 45°

to the z-axis, and lying in the x-y plane The result should

be expected to be worst here because of high dispersion in

the mesh for propagation in this direction, and because of

the sharp change in node spacing at the corner of the cube,

through which the waveguide was chosen to pass. h had to be

reduced to 8 x 10–4, and a reflection coefficient of 0.78 was

computed, with the reflected pulse arriving back at the origin

after 29000 iterations. This poor result with an extraordinarily

long run time is because of the large distortion of space near

the corners of the cube.

IV. SPHERICAL BOUNDARY

A spherical boundary between regions I and II is another

possibility, Fig. 7. With the spherical shape, if a whole cubic

mesh is stored in computer memory, then only about half

the volume is inside the inscribed sphere, so that half the

memory is unused. This inefficiency may be remedied by

storing only the data for those nodes lying inside the sphere.

The appropriate transformation from region II to region II’ is

the vector reciprocal

(~, v, () = (z/rz, y/r2, z/r2),

rz=xz+yz+zz. (13)

The metrics are given by

h<=hu=h<=r2. (14)

Now, not only does the boundary transform to itself, but each

point on the boundary also transforms to itself, removing the

502.4

iEyl

o

-354,1 ~,

0 iterations 10000

Fig. 8. Reflected signal for infinite exterior region,

difficulty of variation of node spacing encountered with the

cubic boundary. Because the transformation is conformal, the

angle of incidence to the sphere of the link transmission lines

just inside the surface of the sphere is the same as the angle of

incidence of those just outside. It will be seen from Fig, 7(a)

that this causes the direction of propagation along the link lines

in real space to change sharply across the spherical boundary,

especially around 45° latitude. However, if we ensure that the

entire object or device to be modeled is contained within the

sphere, then the exterior region is only used as an absorbe~

one is not interested in the exact values of the fields here.

It will also be seen from the figure that the dimensions of

those cells just inside the surface of the sphere are different

from their neighbors. This must be accounted for by modifying

the characteristic impedances of the stubs for these nodes by

substituting the local cell dimensions into (6).

The same nondispersive waveguide was modeled using the

spherical boundary. The node spacing was 1 length unit and

the radius of the sphere was 120.5 units. The hybrid condensed

node was used. Waveguide orientations were chosen again

firstly along one mesh and, secondly, at an angle of 45° to

one axis, where pulse dispersion and the change of direction

of link lines should give a worse result, The field observation

point was midway between the origin and the surface of the

sphere.

The value of h and the computed reflection coefficient

are shown in Table I together with those for the spherical
condensed node from [9]. In some cases, the reflected waves

were buried in the numerical noise, so the figures in the table

are accurate to between one and two significant figures. As

in the case of the cubic boundary, a high frequency return

signal became apparent at a large number of iterations, again

a larger number than would be used in a normal application.

The value of h for the hybrid condensed node is about half that
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symmetrical condensed node, so that the execution time

uromam is about half for the hvbrid condensed node
.“ .

formulation. For comparison, the reflection coefficient for a

TEM boundary with no exterior region is included, computed

from the load impedance in (1).

When the waveguide was pointed along an axis of the mesh,

an extremely low reflection coefficient was achieved in the

case of the symmetrical condensed node, an excellent result.

When the waveguide was pointed at 45° to one of the axes

of the mesh, and for the hybrid condensed node, the reflection

coefficient was higher, but still very small, around 0.0013 to

0.024 or –58 dB to –32 dB. This compares well with the

results of other methods noted above [8], [9], where reflection

coefficients of as low as 0,03 were reported, and is much less

than the value for the TEM boundary alone. Surprisingly, the

low result is achieved despite the abrupt change of direction

of the link lines at the surface of the sphere. This may be

because the wavefront still propagates properly along the horn,

although the contributing wavelets along the link lines become

interchanged as they cross the spherical surface.

V. LIMITING THE SIZE OF THE EXTERIOR REGION

If only a part of the region II of Fig. 1 needs to be modeled,

then computer storage and time requirements are reduced. To

study this aspect, the horn described in Section IV above

was truncated by bringing the plane of match-terminated link

transmission lines, Fig. 5, closer to the spherical boundary.

Computer storage is not required to model the space beyond

the plane. When the program was run, the incident pulse

was followed in time by the small pulse reflected from the

boundary, then by a large undispersed pulse reflected from the

terminating plane. This suggests that the reflection coefficient

reported above is due chiefly to the abrupt change in direction

of link transmission lines at the boundary.

0.089 -

IEZI

0.004 -

\

I

I

I

1

I

I

I

I

I

I

---- analytic

TLM

0 frequency (GHz) 250

Fig. 10. Spectrum of field diffracted through a slit, matrix edge matched.

As the position of the plane was moved from the spherical

boundary outwards towards infinity, the large reflected pulse

returned after a larger number of iterations, as would be

expected, but grew in amplitude. When the position of the

plane approached the node representing the point at infinity,

the large reflected pulse ‘ceased to grow in amplitude and

became substantially dispersed. Fig. 8 shows the reflected

pulse in this limiting case.

From these results, it is recommended that for a small

number of iterations of the method, the computer storage for

the mesh modeling space outside a certain radius from the

origin may be released. That radius is determined by the

number of iterations taken for the large reflected pulse to

reach the field observation point. Alternatively, if the whole of

infinite space is to be modeled, the number of iterations must

be limited so that the dispersed pulse has not yet returned.

VI. APPLICATION: DIFFRACTION

Au example application is the simulation of the far field for

diffraction through a long narrow slit of width a excited by

a uniform electric field across the slit. The analytical solution

to this is well known and is

E = k sine (pa sin O) (15)

where k is a constant, P is the free-space propagation constant,

O is the scattering angle, and E is the observed electric field

amplitude. This is a difficult problem for the TLM method

as the node spacing must be small so that the zeros of the

sine function fall below the cutoff frequency of the mesh [2].

This means that the mesh must contain a large number of

nodes, increasing computer storage and run time requirements

substantially. In addition, with a far field observation point,
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Fig. 11. Diffracted field, spherical boundary.

any reflection from the edge of the TLM mesh may interfere

with the diffracted field, caushtg errors in the result.

The TLM model is shown in Fig. 9. Advantage is taken of

symmetry to reduce the size of the problem in the long axis

of the slh by introducing a pair of magnetic image planes,

and in its short axis by introducing an electric image plane.

The slh width was a = 6.0 mm, the node spacing 0.3 mm,

and the field observation point distant 60.45 mm from the slit

at @ = 7r/4. This required a large mesh of 201 x 3 x 201

nodes in (w, y, z) directions, respectively. The simulation was

limited to 2047 iterations to give good frequency accuracy but

truncated before the expected dispersed reflected pulse had

any effect. From (15), the zeros of the diffracted field are

expected to fall at multiples of 70.7 GHz. With the edge of the

mesh match-terminated, the spectrum of the simulated field is

compared with the analytic result in Fig. 10. The symmetrical

condensed node and hybrid condensed node formulations gave

identical results. The zeros do fall where expected, but the

response has a short-period ripple superposed, typical of an

interfering reflected signal such as the reflection from the edge

of the mesh. The discrepancy in the low frequency response

is attributed to time series truncation error.

When the method described in this paper is applied, with a

surrounding spherical boundary, Fig. 11, the ripple is absent in

the result for the symmetrical condensed node, corresponding

to the reduced reflection from the edge of the mesh. The

result for the hybrid condensed node did not show a strongly

enhanced behavior. This is attributed to spurious scattering at

the spherical boundary where the local cell dimensions vary

from the 0.3 mm cube.

VII. CONCLUSION AND RECOMMENDATIONS

This paper has described a method of modeling the infinite

space outside the region under study in the TLM method.

This can be done by dividing space with a boundary surface

and using a transformation and two transmission-line matrices

instead of one. A cubic boundary, used with the Weierstrass

transformation, gives quite poor results. However, when a

spherical boundary and the reciprocal transformation are used,

the amplitude of reflections at the edge of the mesh is reduced

to between 2 x 10–6 and 0.024, depending on the position of

the reflecting point relative to the axes of the mesh, and on

which node formulation is used. These results compare well

with those of other methods, where a reflection coefficient as

low as 0.03 has been reported. A cubic mesh in Cartesian

coordinates has been used in this work. It would be expected

that a lower reflection coefficient could be achieved if a

mesh based on spherical polar coordinates were used with

a spherical boundary, as this eliminates the abrupt change

in direction of the link transmission lines at the boundary.

This would be suitable when the physical structure of the

device under study lends itself to description in spherical

coordinates.

When the mesh describing the infinite region outside the

boundary is limited in size by not modeling space beyond a

certain distance from the origin, or when a large number of

iterations is used, a large reflected signal is observed. This

number of iterations is normally larger than that required for

a certain level of truncation error in a given application. It is

recommended that the number of iterations required to limit

truncation error be used as a guide to how much of the mesh

may safely be omitted.
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